206 research outputs found

    Can quarkonia survive deconfinement ?

    Full text link
    We study quarkonium correlators and spectral functions at zero and finite temperature in QCD with only heavy quarks using potential models combined with perturbative QCD. First, we show that this approach can describe the quarkonium correlation function at zero temperature. Using a class of screened potentials based on lattice calculations of the static quark-antiquark free energy we calculate spectral functions at finite temperature. We find that all quarkonium states, with the exception of the 1S1S bottomonium, dissolve in the deconfined phase at temperatures smaller than 1.5Tc1.5T_c, in contradiction with the conclusions of recent studies. Despite this the temperature dependence of the quarkonium correlation functions calculated on the lattice is well reproduced in our model. We also find that even in the absence of resonances the spectral function at high temperatures is significantly enhanced over the spectral function corresponding to free quark antiquark propagation.Comment: Version accepted in Phys. Rev. D, 20 pages, 25 figure

    Quarkonium states in an anisotropic QCD plasma

    Full text link
    We consider quarkonium in a hot QCD plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.Comment: 18 pages, 6 figures, final version, to appear in PR

    Dissipation near the QCD phase transition

    Get PDF
    We set up a framework for field theoretical studies of systems out of thermal equilibrium and zoom in on the dissipation of disoriented chiral condensates. Short relaxation times are obtained in the phase transition region, jeopardizing the definiteness of a DCC signal.Comment: 4 pages, 4 figures, espcrc.sty, to be published in the proceedings PANIC02, Osaka, Japan, September 30 - October 4, 200

    Quarkonia Correlators Above Deconfinement

    Full text link
    We study the quarkonia correlators above deconfinement using the potential model with screened temperature-dependent potentials. We find that while the qualitative features of the spectral functions, such as the survival of the 1S state, can be reproduced by potential models, the temperature dependence of the correlators disagree with the recent lattice data.Comment: 21 pages, 26 eps figure

    S-Wave Quarkonia in Potential Models

    Get PDF
    We discuss S-wave quarkonia correlators and spectral function using the Wong-potential, and show that these do not agree with the lattice results.Comment: based on talk presented at Strangeness in Quark Matter, UCLA, March 26-31, 200

    A római név mint társadalomtörténeti forrás : Akadémiai székfoglaló : 1983. április 6.

    Get PDF

    Pannonia-Forschung 1973-1976

    Get PDF
    corecore